- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003100001000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Ghosh, Nikhil (5)
-
Yu, Bin (4)
-
Hayou, Soufiane (3)
-
Belkin, Mikhail (1)
-
Frei, Spencer (1)
-
Ha, Wooseok (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we study the role of initialization in Low Rank Adaptation (LoRA) as originally introduced in Hu et al. [19]. Essentially, to start from the pretrained model as initialization for finetuning, one can either initialize B to zero and A to random (default initialization in PEFT package), or vice-versa. In both cases, the product BA is equal to zero at initialization, which makes finetuning starts from the pretrained model. These two initialization schemes are seemingly sim- ilar. They should in-principle yield the same performance and share the same optimal learning rate. We demonstrate that this is an incorrect intuition and that the first scheme (initializing B to zero and A to random) on average yields better performance compared to the other scheme. Our theoretical analysis shows that the reason behind this might be that the first initialization allows the use of larger learning rates (without causing output instability) compared to the second initial- ization, resulting in more efficient learning of the first scheme. We validate our results with extensive experiments on LLMs.more » « less
-
Hayou, Soufiane; Ghosh, Nikhil; Yu, Bin (, ICML)
-
Hayou, Soufiane; Ghosh, Nikhil; Yu, Bin (, Arxiv)
-
Ghosh, Nikhil; Belkin, Mikhail (, arXivorg)
-
Ghosh, Nikhil; Frei, Spencer; Ha, Wooseok; Yu, Bin (, 14th Annual Workshop on Optimization for Machine Learning (NeurIPS 2022 Workshop))
An official website of the United States government

Full Text Available